

Plug-in Hybrid Electric Vehicle Environmental Assessment

California Emerging Clean Air Technology Forum

July 9, 2008

Mark Alexander Manager, Vehicle Systems Analysis Overview CO_2 Results
Air Quality Results
Next Steps

Overview

CO₂ Results
Air Quality Results
Next Steps

Power Plant-Specific PHEV Emissions in 2010 PHEV 20 – 12,000 Annual Miles

Technologies for New Generation in 2010-2015

Levelized Cost of Electricity, \$/MWh

Electric Sector Scenarios

Scenario Definition	High CO ₂	Medium CO ₂	Low CO ₂
Cost of CO ₂ Emissions Allowances	Low	Moderate	High
Power Plant Retirements	Slower	Normal	Faster
New Generation Technologies	Unavailable: Coal with CCS New Nuclear New Biomass	Normal Technology Availability and	Available: Retrofit of CCS to existing IGCC and PC plants
	Lower Performance: SCPC, CCNG, GT, Wind, and Solar	Performance	Higher Performance: Solar
Annual Electricity Demand Growth	1.56% per year on average	1.56% per year on average	2010 - 2025: 0.45% 2025 - 2050: None

SCPC – Supercritical Pulverized Coal CCNG – Combined Cycle Natural Gas

GT – Gas Turbine (natural gas) CCS – Carbon Capture and Storage

PHEV Medium Scenario

- Low, Medium, High PHEV market penetration scenarios
- Corresponds to 20%, 60%, and 80% peak market share
- New vehicles take time to penetrate nationwide fleet

New Vehicle Market Share: Medium PHEV Scenario

Growth of PHEVs and eVMT in Nationwide Fleet

Overview

CO₂ Results

Air Quality Results
Next Steps

Electric Sector Simulation Results (2050) PHEV 10, 20, & 40 – 12,000 Annual Miles

Greenhouse Gas Emissions Reductions

- Electricity grid evolves over time
- Nationwide fleet takes time to renew itself or "turn over"
- A potential 400-500 million metric ton annual reduction in GHG emissions (the US currently emits 6 million metric tons annually)

Annual Reduction in Greenhouse Gas Emissions From PHEV Adoption

Impacts to Electricity and Petroleum

- Moderate electricity demand growth
- Capacity expansion 19 to 72 GW by 2050 nationwide (1.2 – 4.6%)
- 3-4 million barrels per day in oil savings (Medium PHEV Case, 2050)

Electricity Demand: Medium CO₂ Case

Overall CO₂e Results

- All nine scenarios resulted in CO₂e reductions from PHEV adoption
- Every region of the country will see reductions
- In the future, PHEVs charged from new coal (highest emitter)
 w/o CCS roughly equivalent to HEV, superior to CV
 - There is unlikely to be a future electric scenario where PHEVs do not return CO₂e benefit

2050 Annual CO ₂ e Reduction (million metric tons)		Electric Sector CO ₂ Intensity			
		High	Medium	Low	
PHEV Fleet Penetration	Low	163	177	193	
	Medium	394	468	478	
	High	474	517	612	

Overview

CO₂ Results

Air Quality Results

U.S. Power Plant Emissions Trends

Source: U.S. Environmental Protection Agency

- Power plant emissions of SO₂ and NOx will continue to decrease due to tighter federal regulatory limits (caps) on emissions
- Other local and national regulations further constrain power plant emissions
- Air quality is determined by emissions from all sources undergoing chemical reactions within the atmosphere

Net Changes in Criteria Emissions Due to PHEVs

Power Plant Emissions

- Emissions capped under law (SO₂, NOx, Hg) are essentially unchanged
- Primary PM emissions increase (defined by a performance standard)

Vehicle Emissions

- NOx, VOC, SO₂, PM all decrease
- Significant NOx, VOC reductions at vehicle tailpipe
- Reduction in refinery and related emissions

PHEVs Reduce Formation of Ozone

- Air quality model simulates atmospheric chemistry and transport
- Lower NOx and VOC emissions results in less ozone formation particularly in urban areas

Change in 8-Hour Ozone Design Value (ppb)
PHEV Case – Base Case

PHEVs Reduce Formation of Secondary PM_{2.5}

- PM_{2.5} includes both direct emissions and secondary PM formed in the atmosphere
- PHEVs reduce motor vehicle emissions of VOC and NOx.
- VOCs emissions from power plants are not significant
- Total annual SO₂ and NOx -2000from power plants capped by federal law
- The net result of PHEVs is a notable decrease in the formation of secondary

Change in Daily PM_{2.5} Design Value (µg m⁻³) PHEV Case – Base Case

Ozone Design Value Exposure Changes

Daily PM_{2.5} Design Value Exposure Changes

PHEVs Improve Overall Air Quality

Reduced Deposition of Sulfates, Nitrates, Nitrogen, Mercury

Overview $CO_2 Results$ Air Quality Results

- State-specific results for CA, OH, due in Q1-08
- Expand air quality analysis to include carbon constraints
- Continue GHG analysis as industry economics and technology changes
- Adopt market penetration forecasts in place of bounding scenarios
- Modify vehicle assumptions as PHEV technology evolves
- Expand analysis to other regions of interest

Change in Daily PM_{2.5} Design Value (µg m⁻³) PHEV Case – Base Case

- State-specific results for CA, OH, due in Q1-08
- Expand air quality analysis to include carbon constraints
- Continue GHG analysis as industry economics and technology changes
- Adopt market penetration forecasts in place of bounding scenarios
- Modify vehicle assumptions as PHEV technology evolves
- Expand analysis to other regions of interest

Change in Daily PM_{2.5} Design Value (µg m⁻³) PHEV Case – Base Case

